
Urdu Handwriting Recognition using Deep Leaning

Shehryar Malik∗, M. Naeem Maqsood∗, Abdur Rehman Ali∗,
Ubaid Ullah Fayyaz∗ and Qurat-ul-Ain Akram†

∗Department of Electrical Engineering,
University of Engineering and Technology, Lahore
†Center for Language Engineering, Lahore

shehryarmalik04@outlook.com, m.n.maqsood168@gmail.com, abdurrehmanali25@gmail.com,
ubaid@uet.edu.pk, ainie.akram@kics.edu.pk

Abstract—Optical character recognition aims to recognize
text in images. Recent breakthroughs in deep learning have
revolutionized OCR systems for languages such as English.
However, their impact on Urdu has been minimal. This paper
aims to bridge this gap. We develop a new dataset comprising
of around 15, 000 images of Urdu handwritten text lines and
use it to train different deep learning architectures. The first
is the standard CNN-RNN architecture that optimizes the Con-
nectionist Temporal Classification function. We also incorporate
a trigram language model with this architecture to further
improve performance. The second architecture is an attention-
based encoder-decoder network that optimizes the cross-entropy
function for each character in the transcription. We achieve
accuracies of 91.51% and 90.07% on the two architectures
respectively. These results are comparable to the state-of-the-art
results on English datasets.

Index Terms—Optical character recognition, deep learning,
recurrent neural networks, connectionist temporal classification,
attention-based model, language model

I. INTRODUCTION

Consider the problem of reading text written on a piece of
paper. The human mind accomplishes this task through a series
of steps. It might begin by first identifying which parts of the
paper contain text. Next, it would decide where to start reading
from. To do that, it would also have to recognize the fact that
the paper might contain many lines and that lines needs to
be read individually in a certain sequential order. If a word is
not written clearly then the mind knows to use previous and
future contexts of the text to try to identify it. However, if
the text is just a collection of random words, then the mind
recognizes that and understands that it should not take into
account the context. If the text is multilingual, then the mind
also has to decide which parts of it belong to which language.
It also needs to take into account cases where some of the
languages are read left-to-right and the others right-to-left. In
short, several complex decisions need to be made which also
require an understanding of the text.

Recent breakthroughs in the field of machine learning,
especially in the form of deep learning, have made systems
that can read text documents more realizable than ever before.
Apart from bringing artificial intelligence one step closer
to human intelligence, these optical character recognition
systems can assist people in a wide range of affairs. For
example, state institutions can use these systems to digitize
old records, thus sparing them the need of large storage areas.

Similarly, libraries can easily create electronic versions of any
old books they might have, thus preserving them for eternity.

Urdu is the national language of Pakistan and is spoken
by over a 100 million people [1]. It is written from right to
left using the Persian script and has 58 letters [2]. Characters
physically join together to form ligatures. Each word contains
one or more ligatures. The shape of each character varies
according to its position in the ligature. Unlike English, no
space is inserted between words in Urdu.

In this paper, we present an optical recognition system for
Urdu using deep learning.

II. LITERATURE REVIEW

Optical Character Recognition (OCR) typically involves five
steps: preprocessing, segmentation, feature extraction, classi-
fication and recognition and post-processing. In this chapter,
we present a brief review of the OCR literature.

A. Preprocessing

Preprocessing involves a number of steps [3] that help
improve the accuracy of later stages by removing noise and
unnecessary details from an image.

Binarization is the process of converting a colored or gray-
scale image to a binary image. In a binary image, all pixels
can only take on two values: 0 or 1. One way of doing this
is through Otsu’s method [4] where we assume that an image
contains two classes of pixels and then calculate the optimum
threshold that separates them.

Sometimes scanning introduces a skew in images that needs
to be corrected. Several different techniques exist for this
purpose (see for e.g [5], [6]).

Other techniques involved in preprocessing include noise
removal, background elimination, removal of black bound-
aries and extra white spaces, gray-scale normalization, size-
normalization, smoothing and thinning (see for e.g. [3] and
[7]).

B. Segmentation

Instead of feeding an image of an entire page of handwritten
text to some classifier, it is usually useful to segment it into
pieces first. These pieces could be individual lines, words or
ligatures [3]. One way of doing this is through horizontal
projection. Pixel values in each row are summed up. Assuming



Fig. 1: The CNN-RNN-CTC Model

that 0 corresponds to a white pixel, a row summing up to
zero would indicate a white line. This information can be
used to segment the image into individual lines. Similarly,
vertical projection can be used to segment images of lines
into individual words and/or ligatures. However, in the case
of images of handwritten text, this is generally harder (as
lines/words/ligatures may overlap). [3] reviews different seg-
mentation techniques.

C. Feature Extraction

Instead of feeding raw images (that might contain noise) to
a classifier, one may first extract information that is relevant to
the task-at-hand and only feed in that information. The goal
of feature extraction is to extract this information from raw
images.

Approaches to feature extraction include the computation of
curvature, slope, end-points axes ratio, the length variations of
strokes, shape context, discrete cosine transform and discrete
wavelet transform and zoning features etc. (see for e.g. [8] and
[3]).

However, more recent research does not extract features
explicitly and instead feeds raw images to the classifier (see
for e.g. [9] and [10]).

D. Recognition

Traditionally, Hidden Markov Models (HMM) were used
for the recognition phase (see [11] for a review of some OCR
systems that used HMM). However, recent research uses deep
learning (neural nets) for this purpose.

Depending on the segmentation step, the classifier will
either need to recognize images of either single characters
([12] and [13]) or complete lines ([5] and [14]) or entire
paragraphs [9].

E. Post Processing

Once the text in an image has been recognized, additional
steps such as spell-checking and grammar corrections can
be carried out to improve the accuracy of the recognition

system. This of course assumes that the text in the image is
grammatically correct and contains valid words.

III. DATASET

[5] introduces the Urdu Nastaleeq Handwritten Dataset
(UNHD). While the UNHD dataset consists of 10, 000 text
lines, only 4, 240 are publicly available, which are not enough
to train a robust deep neural network. As a result, we create
a new dataset for the purpose of this thesis. The dataset will
be available for further research.1

For this new dataset, 500, 000 text lines were selected from
Urdu literature. 10, 000 lines were picked from these lines in
such a way that the ratios of the frequencies of words remained
the same. These lines (after some filtering) were divided into
490 pages, each consisting of 20 lines. Each page was given
a unique 4-digit i.d. and was written by a distinct writer. Each
writer too got a unique 4-digit i.d.

The writers ranged between 15 and 30 years of age, were
of both sexes and mostly belonged to schools, colleges and
universities. The writers were given pages with black lines
drawn on them for writing. Red pens with 6 different stroke
widths were used for writing. The writers were instructed to
leave one blank line after every line. Writers usually took 1
to 3 lines to write each printed text line.

Each page was scanned using a flatbed scanner at 300 dots
per inch (dpi) and saved using the .jpg format. Only the red
pixels were extracted from each page. This removed the black
lines in the background. The images were then segmented into
text lines using horizontal projection. Each image was assigned
a unique 10 digit i.d. of the format aaaa bbbb cc, where aaaa
was the i.d. of the writer who wrote them, bbbb was the i.d.
of the 20-line page that the writer wrote and cc was the line
number of the writer’s page.

The final dataset contains 15, 164 text lines written by 490
different writers in 6 different strokes and has 13, 497 trigrams,
1, 674 bigrams and 61 unigrams.

1Contact http://cle.org.pk/ for this dataset.



Fig. 2: The Attention-Based Encoder-Decoder Model

The dataset is further divided into training and test sets
consisting of 13, 351 and 1, 813 images respectively. 440
writers contributed to the training set while 86 contributed
to the test set. 288 images in the test set are of writers who
also contributed to the training set.

IV. EXPERIMENTS

All white columns in the images are removed. The images
are then binarized using Otsu’s method [4] and normalized to
a height of 64. The width is adjusted in such a way that the
aspect ratio is maintained. Images are divided into 5 buckets
depending on their widths. All images in a bucket are zero-
padded upto the maximum width in that bucket.

In Urdu, each character has a different shape based on its
position (initial, in-between, final, isolated) in its ligature. We
assign each shape a distinct i.d.

For all experiments, we use Adam [15] with an initial
learning rate of 0.96. The batch size is set to 32. We use
a dropout [16] of 0.2 for all recurrent neural networks. We
also use gradient clipping [17]. The gradients are re-scaled
whenever a gradient norm exceeds 5. No L2 regularization
was used.

A. CNN-RNN-CTC Model
Fig. I shows the CNN-RNN-CTC model. As Urdu is read

from right to left, we flip all images horizontally before feed-
ing them to the network. Each CONV-POOL block contains a
convolutional layer, a ReLU activation and a pooling layer in
that order. In some cases, batch normalization [18] is applied
to the output of the max pooling layer. Table I details the
settings used for these blocks. The two numbers in the Pool
Strides column correspond to the horizontal and vertical strides
respectively. A stride of 1 essentially means that no pooling
was done for that axis.

The learning rate was decayed by 0.96 after every 1, 000
training steps taken by the model. The connectionist temporal

TABLE I

CONV-POOL Blocks in the CNN-RNN-CTC Model

Block Filter Size Pool Strides Batch Norm

1 5× 5× 32 2,2 No
2 5× 5× 64 1,2 No
3 5× 5× 128 1,2 Yes
4 5× 5× 128 1,2 No
5 3× 3× 256 1,2 No
6 3× 3× 256 1,2 No
7 3× 3× 512 1,1 Yes

classification objective function [19] was optimized. We use
three different decoding strategies: greedy search, beam search
and beam search with language modeling. In the last two cases,
the beam width is set to 10.

B. Language Model (LM)

[20] presents an algorithm that incorporates a word-based
language model for networks using connectionist temporal
classification. However, word-based language models can only
be used for languages such as English where words can be
distinguished through the ‘space’ between them.

We instead use a ligature-based language model. Our lan-
guage model is a simple trigram model with Kneser-Ney
smoothing [21]. [20] essentially applies the language model
whenever a space is encountered (indicating the end of a
word). We instead apply the language model whenever a
ligature ends. Recall that each character was assigned a distinct
i.d. based on its position in its ligature. Therefore, we can
easily identify all ids that signal the end of a ligature.

We set α and β in the algorithm in [20] to 0.5 and 4
respectively. Additionally, at each time step we only consider
characters with probability greater than 0.001.

C. Attention-Based Encoder-Decoder Model

All images are fed to several CONV-POOL blocks. Table
II details the settings used for these blocks. We feed the



(a) CNN-RNN-CTC (b) Encoder-Decoder

Fig. 3: Training Plots

TABLE II

CONV-POOL Blocks in the Encoder-Decoder Model

Block Filter Size Pool Strides Batch Norm

1 5× 5× 16 2,2 No
2 5× 5× 32 1,2 Yes
3 5× 5× 64 1,2 No
4 3× 3× 64 1,2 Yes
5 3× 3× 128 1,2 No
6 3× 3× 128 1,2 No
7 2× 2× 128 1,1 Yes

output of these blocks to an encoder-decoder network [22].
We also make use of the attention mechanism given in [23].
The encoder is two-layer stacked bidirectional LSTM where as
the decoder is a two-layer stacked unidirectional LSTM. Each
LSTM layer has 512 units. We use layer normalization [24]
for both the encoder and the decoder. The alignment model is
a simple feed forward network with 512 hidden units. We also
assign each character id an embedding vector of size 256. It is
this embedding vector that is fed to the decoder. We optimize
the cross-entropy objective function for each character in the
transcription. We do not flip images in this case and leave it
to the model to learn the direction of the script.

Fig. 2 shows the model. We have omitted the convolutional
and embedding layers for conciseness.

We make use of scheduled sampling [25] to train the entire
model. The initial sampling probability is set to 0.80. Both
this probability and the learning rate are decayed by 0.96 after
every 4, 000 training steps. We use two decoding strategies:
greedy search and beam search.

V. RESULTS

Fig. 3 shows the losses and gradient norms during training.
Table III shows the results of the experiments.
Fig. 4 shows the alignments assigned to an image overtime

by the alignment model. Note that the model learns to read

TABLE III

Results

CNN-RNN-CTC Encoder-Decoder

Greedy Search 88.50 89.52
Beam Search 88.75 90.07
Beam Search + LM 91.51 -
On English [14] 93.80 91.90

from right to left
We train the trigram language model on 10, 000 Urdu text

lines and achieve a perplexity of 47.621 on a held-out (test) set.
Fig. 5 shows an example where the language model increases
the accuracy of the output.

VI. CONCLUSION

In this paper, we have developed a dataset comprising of
images Urdu handwritten text lines and their corresponding
transcriptions and have used it to train to deep learning models.
Additionally, we have also incorporated an n-gram language
model.

REFERENCES

[1] “Urdu,” http://www.omniglot.com/writing/urdu.htm, accessed: 2019-04-
08.

[2] “Controversy over number of letters in Urdu alphabet,” https://www.
dawn.com/news/919270, accessed: 2019-04-08.

[3] S. Naz, K. Hayat, M. I. Razzak, M. W. Anwar, S. A. Madani, and S. U.
Khan, “The optical character recognition of urdu-like cursive scripts,”
Pattern Recogn., vol. 47, no. 3, pp. 1229–1248, Mar. 2014.

[4] N. Otsu, “A Threshold Selection Method from Gray-level Histograms,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 9, no. 1, pp.
62–66, 1979.

[5] S. B. Ahmed, S. Naz, S. Swati, and M. I. Razzak, “Handwritten urdu
character recognition using one-dimensional blstm classifier,” Neural
Computing and Applications, pp. 1–9, 2017.

[6] A. Dengel and R. Ahmad, “A novel skew detection and correction
approach for scanned documents,” 04 2016.

[7] Y. Alginahi, “Preprocessing techniques in character recognition,” in
Character Recognition, M. Mori, Ed. Rijeka: IntechOpen, 2010, ch. 1.



Fig. 4: Visualization of the Attention Mechanism

(a) Image

(b) Without a Language Model

(c) With a Language Model

Fig. 5: Demonstrating LM

[8] A. Lawgali, Bouridane, M. Angelova, and Z. Ghassemlooy, “Hand-
written arabic character recognition: Which feature extraction method,”
International Journal of Advenced Science and Technology, vol. 34, pp.
1–8, 01 2011.

[9] T. Bluche, J. Louradour, and R. Messina, “Scan, attend and read: End-to-
end handwritten paragraph recognition with mdlstm attention,” 11 2017,
pp. 1050–1055.

[10] M. Jain, M. Mathew, and C. V. Jawahar, “Unconstrained ocr for urdu
using deep cnn-rnn hybrid networks,” 2017 4th IAPR Asian Conference
on Pattern Recognition (ACPR), pp. 747–752, 2017.

[11] L. M. Lorigo and V. Govindaraju, “Offline arabic handwriting recogni-
tion: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 5,
pp. 712–724, May 2006.

[12] A. Elsawy, M. Loey, and H. El-Bakry, “Arabic handwritten characters
recognition using convolutional neural network,” WSEAS TRANSAC-
TIONS on COMPUTER RESEARCH, vol. 5, pp. 11–19, 01 2017.

[13] A. Sahlol and C. Suen, “A novel method for the recognition of isolated
handwritten arabic characters,” CoRR, vol. abs/1402.6650, 2014.

[14] A. Chowdhury and L. Vig, “An efficient end-to-end neural model for
handwritten text recognition,” in BMVC, 2018.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[16] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[17] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proceedings of the 30th International
Conference on International Conference on Machine Learning - Volume
28, ser. ICML’13. JMLR.org, 2013, pp. III–1310–III–1318.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings
of the 32Nd International Conference on International Conference on
Machine Learning - Volume 37, ser. ICML’15. JMLR.org, 2015, pp.
448–456.

[19] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: Labelling unsegmented sequence data with
recurrent neural networks,” in Proceedings of the 23rd International

Conference on Machine Learning, ser. ICML ’06. New York, NY,
USA: ACM, 2006, pp. 369–376.

[20] A. L. Maas, A. Y. Hannun, D. Jurafsky, and A. Y. Ng, “First-pass large
vocabulary continuous speech recognition using bi-directional recurrent
dnns,” CoRR, vol. abs/1408.2873, 2014.

[21] R. Kneser and H. Ney, “Improved backing-off for m-gram language
modeling.” in ICASSP. IEEE Computer Society, 1995, pp. 181–184.

[22] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder–decoder for statistical machine translation,” in Proceedings
of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Doha, Qatar: Association for Computational
Linguistics, Oct. 2014, pp. 1724–1734.

[23] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv, 2014.

[24] L. J. Ba, R. Kiros, and G. E. Hinton, “Layer normalization,” CoRR, vol.
abs/1607.06450, 2016.

[25] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling
for sequence prediction with recurrent neural networks,” in Proceedings
of the 28th International Conference on Neural Information Processing
Systems - Volume 1, ser. NIPS’15. Cambridge, MA, USA: MIT Press,
2015, pp. 1171–1179.


